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Abstract

Dexterous manipulation with multi-finger robotic hands remains a significant challenge for general-
purpose robots. Recent Vision-Language-Action (VLA) models show promise in learning flexible
skills from human-guided demonstrations, yet their scalability is limited by the scarcity of high-
quality training data. Existing real-robot data collection faces inherent constraints: fully manual
teleoperation imposes excessive cognitive load on human operators, limiting session duration,
while automated planning often produces stiff, unnatural motions and yields suboptimal data
distribution for learning skillful manipulation.
To address this, we propose a Shared Autonomy framework that partitions control along the
macro-micro motion domains. A human operator guides the robot end-effector via intuitive VR
teleoperation, while an autonomous DexGrasp-VLA policy, using real-time tactile and local visual
feedback, assists fine-grained and force-adaptive hand control as a Copilot. This division of labor
significantly reduces human cognitive load and enables efficient collection of high-quality data of
coordinated arm-hand demonstrations with minimum mental fatigue.
Using these demonstration data, we train an end-to-end VLA policy enhanced with a novel Arm-
Hand Feature Enhancement module. This architecture explicitly captures both the distinct latent
features of macro (arm) and micro (hand) movements and their shared representations, resulting
in smoother and more robust arm-hand coordination. Furthermore, our Corrective Teleoperation
system supports continuous policy improvement through human-in-the-loop failure recovery and
data augmentation. Experiments show that the framework produces high-quality data with very
low operator effort, and the resulting fine-tuning can effectively train policies that achieve around
90% success rate across more than 50 diverse objects, including unseen instances. The system’s
effectiveness is validated through comprehensive evaluations and ablation studies, highlighting its
potential for advancing dexterous robotic manipulation.
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1 Introduction

The goal of general-purpose robots is to achieve physical intelligence comparable to humans for complex
tasks through flexible and diverse manipulation. Humanoid robots with dexterous hands offer promising
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potential for this goal because of the form factor of anthropomorphic design, which naturally blends into
human-centric environments. However, a critical bottleneck remains to unlock their full potential: advanced
dexterous manipulation [10, 43, 52]. This capability requires not only precise control of the robotic arm’s
spatial motion but also the execution of delicate hand actions and, crucially, seamless coordination between
the two. Currently, learning such a level of arm-hand coordination remains an open question.

Recent advancements in end-to-end learning, particularly Vision-Language-Action (VLA) models [4, 5, 23,
25, 57], have demonstrated promising performance in dexterous manipulation. However, VLA training, as
a data-driven paradigm, relies on large-scale and high-quality demonstration datasets [6, 24, 39]. Common
data collection methods predominantly rely on fully manual teleoperation [15, 54], where an operator needs
to simultaneously control all the Degrees-of-Freedom (DoFs) of both the arms and dexterous hands. Such a
teleoperation scheme imposes an excessive cognitive load, resulting in low efficiency and scalability. From our
practice, the reasonable average operational time is around 30 minutes without incurring extra mental fatigue.
Most realistically, for untrained personnel, even 20 minutes of continuous full-DoF teleoperation is tiring.

Alternative approaches used reinforcement learning to learn manipulation skills by robots themselves [10,
29, 41, 48], or leverage motion planning [13, 16, 22, 40] to produce data. Although demonstrations and data
are generated automatically, they often require extensive manual engineering beforehand, and typically it is
not trivial to design good controllers for multi-finger dexterous tasks, or the automated policies are likely to
produce unnatural manipulation behaviors, such as unwanted grasping poses. From our empirical practice,
while automated planning and trajectory optimization methods can systematically generate data with a
broad range of state-action pairs and high diversity through controlled, parameterized randomization, they
suffer from two critical shortcomings for learning skillful manipulation. First, the generated motions often
lack the sleekness of human movement, and the generated robot trajectories appear stiff and are inefficient
speed-wise. Second, more fundamentally, as for imitation-based VLA training, the data distribution produced
by automation is shaped by the planner’s own solvers, constraints, and parameterized randomization. Although
this distribution is often quantitatively diverse, it is qualitatively and unavoidably misaligned with the target
distribution required for specific tasks. It fails to capture the nuanced task-relevant “tricks”, compared to
the priors of human experts learned in a lifelong fashion. Consequently, policies trained on such automated
data may exhibit suboptimal performance, and fail to capture the nuanced task-relevant strategies exhibited
inherently in the high-quality curated data from human demonstrations.

To address these limitations, we propose a Shared Autonomy framework (Fig. 1) that partially offloads
the high-level arm teleoperation from fine-grained low-level autonomous control of multiple fingers of the
dexterous hand, enabling efficient collection of high-quality and coordinated demonstrations with low mental
load. The core innovation lies in a functional division of shared control that leverages the complementary
strengths of humans and AI (the autonomous VLA policy for the hand): the human focuses on high-level
scene understanding, semantics, spatial reasoning, and affordance to teleoperate the robot end-effector easily
via the Virtual Reality (VR) interface. Meanwhile, a learned DexGrasp-VLA controller acts as a VLA Copilot
that autonomously executes fine-grained and compliant grasping motions with the dexterous hand. The
DexGrasp-VLA copilot for the hand is a tactile-based VLA policy for the dexterous hand. It integrates
language commands, in-hand camera images, proprioceptive states, and two complementary tactile features:
resultant force vectors (magnitude and direction) and spatial tactile embeddings (contact distribution patterns).
This multi-modal perception of the DexGrasp-VLA provides sufficient feedback for robust and adaptive
grasping performance across diverse conditions.

This shared-autonomy paradigm eliminates the need for the operator to simultaneously control all degrees
of freedom of a complex arm-hand system. By delegating high-DoF hand control to the VLA Copilot, we
significantly reduce the cognitive load from the human operator, produce naturally coordinated arm-hand
trajectories with stable grasps, and enable faster data collection with a high success rate. It shall be noted
that this work uses VLA policies in two different ways: one is the hand-only tactile-aware VLA, and the other
is for the holistic arm-hand control – the DexGrasp-VLA is a sub-policy for controlling the dexterous hand
within the full VLA framework for data collection and model training.

Using these collected trajectories, we perform Supervised Fine-Tuning (SFT) of a pre-trained VLA model to
learn an end-to-end policy for holistic arm-hand control. A key architectural innovation is our Arm-Hand
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Figure 1 Comparison of fully manual teleoperation and the proposed Shared Autonomy – semi-autonomous
teleoperation, where the human operator focuses on high-level control of the arm motion, while the hand is
controlled by the perceptual AI-Copilot for autonomous grasping.

Feature Enhancement module, which explicitly models the complementary roles of the arm and hand. The
module is comprised of two complementary features: (1) a shared task representation which is encoded
originally by the base VLA model from visual, language, and state inputs; and (2) two additional separate
encoders for the arm and the hand, respectively. Each branch of features is optimized under auxiliary
losses that encourage specialization toward macro-movement (reaching) and micro-manipulation (grasping)
capabilities. The resulting disentangled features are then combined with the original shared representation,
allowing the model to retain the global task context while incorporating the limb-specific dynamics.

This design is motivated by the fundamental kinematic and operational differences between arm and hand
motions: the arm requires smooth, long-horizon control of the end-effector poses, while the hand requires
compliant and contact-rich hand-object interactions. Experiments confirm that this structure leads to more
efficient learning of coordination patterns, much more robust performance under visual disturbances (camera
occlusions), and more natural emergent behaviors compared to a monolithic architecture that predicts all
joint commands from a single undifferentiated representation.

Finally, we implement a Corrective Human-in-the-loop Teleoperation to enable continuous self-improvement
of the deployed policy. During execution of the model inference, successful trajectories are automatically
recorded to form the positive demonstration datasets. More importantly, when the policy fails due to unseen
object shapes, adversarial configurations, or environmental disturbances, the system allows a human operator
to actively intervene in real time through the same shared autonomy interface. The operator takes over the
control, corrects the failure, and completes the task, thereby producing new data of recovery trajectories. Both
the successful and recovery data are aggregated into training datasets for iterative model refinement, enabling
incremental improvements on the policy and thus gradually enhancing robustness, as well as expanding its
capability to handle the real-world variability and corner cases.

The core technical contributions are as follows:

• Novel Multimodal VLA Copilot for Dexterous Grasping: We present DexGrasp-VLA, the first Vision-
Language-Action (VLA) Copilot that robustly fuses visual, tactile, language, and proprioceptive feedback
for autonomous, force-adaptive grasping with a five-finger hand. Its reactive and compliant fine-grained
grasping capability represents a major advance over prior data collection approaches which lacked consistent
performance in contact handling and force adaptability.

• Shared Autonomy for Efficient Data Collection: We propose a paradigm-shifting framework that strategically
divides control between the human operator and the VLA Copilot to overcome the data bottleneck in
dexterous manipulation. By combining intuitive human VR teleoperation for high-level arm guidance assisted
with the tactile-enhanced DexGrasp-VLA Copilot for autonomous fine-grained grasping, we substantially
reduce operator cognitive load and enable efficient collection of high-quality demonstration data.

• End-to-End VLA with Arm-Hand Feature Enhancement: We design a novel VLA architecture that explicitly
disentangles the control of macro (arm) and micro (hand) movements through dedicated feature pathways,
while preserving a shared global task representation. This architectural innovation directly solves the
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problem of monolithic controllers that fail to capture the distinct kinematics and dynamics of the arm and
hand respectively, thus leading to significantly more robust and generalizable arm-hand coordination, with
notably improved resilience to visual occlusions.

• Corrective Human-in-the-Loop Teleoperation for Continuous Policy Improvement: We introduce a corrective
human-in-the-loop intervention that operates without interrupting deployed policy execution, enabling
purposeful data collection from long-tail failure cases during real-world deployment. Such teleoperation
allows humans to assist imperfect VLA executions, producing complementary datasets for scenarios that
would otherwise fail. Integrating these curated recovery data with successful trajectories, we establish a
self-improving data flywheel: retraining the base VLA model on the iteratively augmented dataset results in
an updated policy with enhanced robustness in real-world applications. This approach extends the training
by unifying both pre-scripted demonstrations with in-situ deployment data, thereby enabling targeted
coverage of corner cases that are otherwise impractical to anticipate beforehand.

Our experimental results demonstrate the effectiveness of the proposed framework. It enables the efficient data
collection of high-quality and coordinated arm-hand demonstrations, which in turn underpins the learning of
an end-to-end VLA policy that achieves a 90% success rate across a diverse set of over 50 objects, including
unseen objects and settings. The necessity of each core component was systematically validated through
comprehensive ablation studies, which confirmed that the DexGrasp-VLA model, the Arm-Hand Feature
Enhancement module, and the Corrective Teleoperation system are all essential and significantly improve the
policy’s performance, success rate, and robustness. These strong empirical results provide an essential testbed
for exploring broader algorithmic strategies before scaling up to larger models.

This work is strategically positioned within the broader challenge of developing robust foundational models for
embodied intelligence with a focus on dexterous manipulation. While scaling laws have achieved remarkable
progress in large vision and language models, the direct application to robotics still faces significant data quality
and architectural challenges, due to the fact that motion trajectories, visual streams, and high-frequency
tactile-force signals are fundamentally heterogeneous in nature. Simply brute-force directing heterogeneous
data into a monolithic architecture is unlikely to yield the desired emergent dexterity, or effectively leverage
scaling laws in a scientific manner.

Our work argues that a necessary premise to effective large-scale pre-training is the foundational understanding
of how to algorithmically integrate these distinct sensorimotor pathways. By leveraging SFT of pre-trained
VLA models, we agilely iterate research investigation: we can rapidly isolate and validate core components,
such as our Arm-Hand Feature Enhancement module and effective tactile integration strategies, within a
controlled setting. This approach efficiently exploits the pre-trained models’ semantic and generalization
capabilities, and meanwhile allowing us to focus on the fundamental physical principles of useful multimodal
fusion. Thus, the effective algorithms developed and validated on a smaller scale provide the essential blueprint
for the future collection of massive, high-quality datasets (e.g., via our Shared Autonomy framework), and
strengthen higher likelihood of success in the subsequent pre-training of more sophisticated large-scale robot
foundational models with true human-like physical intelligence.

2 Related Work

2.1 Vision-Language-Action Models for Robot Control

Recent advances in Vision-Language-Action (VLA) models represent a significant step change toward general-
purpose robots that interpret natural language instructions and visual observations for downstream control
tasks [4, 5, 23, 25, 57]. These models typically leverage large-scale pre-trained vision-language models (VLMs)
as semantic backbones and fine-tune lightweight action heads to map multi-modal inputs into robot control
commands. Most existing works, however, focus on low-degree-of-freedom (DoF) end-effectors, such as
two-finger grippers or parallel jaw grippers [14, 31, 50], and are often evaluated on short-horizon tasks like
pick-and-place. This limits their applicability to real-world manipulation scenarios which demand rich contacts
and high dexterity.

An increasing amount of research work has been investigating how to extend the VLA frameworks to dexterous
hand manipulation. The work in [56] proposes a DexGraspVLA model as a hierarchical architecture that
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combines a pre-trained vision-language planner with a diffusion-based low-level action controller. It transforms
diverse language and visual inputs into domain-invariant representations, enabling robust imitation learning.
Being-H0 [34] takes a data-centric approach, pretraining VLA models on large-scale human hand videos
with a novel physical instruction tuning paradigm. The model utilizes part-level motion tokenization for
millimeter-accurate trajectory learning and 3D physical space alignment, thereby enhancing generalization. In
parallel, other research has been conducted to incorporate tactile sensing into VLA models. For example,
OmniVTLA [12] introduces a Vision-Tactile-Language-Action architecture with a dual-path tactile encoder,
consisting of a vision transformer and a semantically-aligned tactile ViT.

Although these methods demonstrate strong performance, they generally treat the arm–hand system as a
single monolithic controller, overlooking the fundamental kinematic and dynamic differences between the arm
and the hand: the arm serves as a floating base for long-range positioning and pre-grasp interactions, while
the hand performs fine-grained and contact-rich multi-finger interactions to acquire various objects.

Based on the first principle of the different characteristics in motion and physical interactions between the
hand and arm, a monolithic design in VLA leads to two key limitations. First, training the arm-hand policies
in a monolithic manner fails to capture the distinct kinematic and dynamic properties of macro-level arm
motion versus micro-level hand manipulation, potentially limiting coordination and robustness. Second, these
systems rely heavily on large-scale, offline-collected demonstrations, either through scripted control policies or
direct full-DoF teleoperation [36] with exoskeletons, which are costly and difficult to scale, creating a data
bottleneck especially for dexterous hands. Moreover, these systems often employ an undifferentiated fusion of
tactile features, lacking explicit representation of contact information for more precise action generation of
the VLAs to fine control hand motions.

In terms of the technical differentiation that overcomes these limitations, our work proposed a novel Shared
Autonomy framework that decouples the control problem to enable tractable data collection. The human only
needs to teleoperate the arm via a VR interface, while the VLA Copilot autonomously controls the multi-finger
hand using a tactile-enhanced VLA policy. Further, to complement this, we developed an Arm–Hand Feature
Enhancement architecture that explicitly disentangles shared semantic representations into limb-specific
embeddings for the arm and hand respectively. This structured representation is then augmented by the
original shared arm-hand features, generating more granular control signals for natural, fine-grained, and
robust arm-hand coordination. This co-design of a scalable data collection and a structured policy architecture
improves interpretability, modularity, and generalization in dexterous manipulation tasks.

2.2 Existing Data Collection Approaches

High-quality demonstrations are critical for imitation learning, especially in high-DoF, contact-rich dexterous
manipulation. Teleoperation-based methods, such as leader-follower setups [54], vision-based retargeting [42],
and VR interfaces [11, 55], can produce precise, human-like trajectories but are difficult to scale due to the
excessive reliance on skilled human operators. On the other hand, automated pipelines that use motion
planners [10, 26, 29, 41, 47], including CuRobo [46], enable efficient large-scale data generation but often lack
contact sensitivity, self-correction ability, or contextual adaptability that are inherent in human demonstrations.

Recent efforts have explored simulation-based data generation frameworks [9, 17, 37, 38], which can produce
large-scale synthetic demonstrations. While simulation provides a scalable alternative for pre-training base
models, real-world data remains essential for sim-to-real transfer, fine-tuning, and co-training. As emphasized
in prior work [35], even with sophisticated sim-to-real techniques, co-training with real robot data is necessary
to bridge the reality gap. Importantly, our preliminary findings show that the amount of real-world data
required for effective sim-to-real co-training is comparable to that needed for direct real-world fine-tuning,
which is typically on the order of hundreds of demonstrations for dexterous manipulation tasks (at least at
the scale of several dozen demonstrations for training task-specific narrow skills).

Motivated to address these limitations, we developed Shared Autonomy with VLA-Copilot that combines
human high-level arm guidance with autonomous hand-level control using tactile feedback. This design
reduces cognitive load, captures both human intent and reactive adaptation, and enables efficient collection of
high-quality real-world demonstrations, which are crucial for training generalizable VLA policies.
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2.3 Tactile Sensing for Robot Manipulation

Tactile sensing provides essential feedback for capturing contact dynamics during physical interactions,
especially in tasks involving compliant interaction, precision, or uncertainty. Prior works have explored
vision-tactile fusion in reinforcement learning, demonstrating effectiveness in assembly [18, 27] and dexterous
in-hand manipulation [19, 33]. These methods typically use tactile signals as feedback for closed-loop policies
in contact-rich scenarios. More recently, studies applied imitation learning to learn combined vision-tactile
representations for fine-grained control [20, 28, 30, 51], enabling reactive manipulation with end-to-end learning
from multimodal demonstrations.

Building on these, recent methods begin to incorporate tactile perception into Vision-Language-Action (VLA)
frameworks [3, 12, 21, 53], improving generalization and robustness across object categories and tasks. For
example, VLA-Touch [3] enhances a frozen VLA backbone with dual-level tactile feedback: a pretrained
tactile-language model assists in high-level semantic planning, and a diffusion controller refines low-level
execution. Tactile-VLA [21] further integrates tactile signals into planning and control, combining hybrid
position–force control with commonsense reasoning based on vision-language priors. This design enables
zero-shot generalization using minimal tactile supervision. VTLA [53] focuses on fine contact tasks such as
insertion, proposing a Vision-Tactile-Language model trained via Direct Preference Optimization, achieving
high success in both simulation and real-world peg-in-hole tasks. OmniVTLA [12] adopts a data-centric
approach, constructing a large tri-modal dataset and learning semantically aligned tactile embeddings across
diverse sensors, improving performance for both grippers and dexterous hands.

Despite nuanced differences in technical details, these methods all attempt to fuse tactile inputs into the
VLA backbone, through full end-to-end retraining, multimodal pretraining, or task-specific architectural
improvements. Such strategies often rely on large-scale tactile datasets, or require architectural changes that
add significant complexity to the model. In contrast, our method uses a modular design approach: we inject
tactile feedback locally into the action expert to enrich the contact-relevant information for improving contact-
rich control, while keeping the vision-language backbone totally intact, adding no extra complexity. This
allows for efficient learning and deployment without full retraining while preserving useful tactile grounding
during execution.

3 Methods and Training Recipe

We present an integrated pipeline for learning dexterous arm-hand policies, which trains the control of the
dexterous hand and arm coherently, as illustrated in Fig. 2. The pipeline consists of four key stages:

• First, we train the DexGrasp-VLA controller to perform autonomous grasping using multimodal feedback
for the dexterous hand (visual and tactile sensing). This controller serves as the core VLA Copilot in our
shared autonomy framework, providing robust force-adaptive grasping capabilities.

• Second, within the shared autonomy framework, a human operator teleoperates the arm via a VR interface,
while the DexGrasp-VLA acts as a VLA Copilot for controlling the hand. This division of labor enables
efficient collection of synchronized arm-hand data with significantly reduced cognitive load for the operator.

• Third, using such synchronized data, we train a holistic end-to-end policy augmented with our novel
arm-hand feature enhancement module. This architecture extracts and fuses dedicated features specifically
for the arm and hand, which significantly improves the coordination between macro- and micro- movements.

• Finally, we implement a corrective teleoperation system that continuously improves the policy by incorpo-
rating both successful trajectory data and human-guided recovery demonstrations. This iterative refinement
process enhances the robustness of the policy against edge cases and distribution shifts.

Together, these components form a complete system for acquiring and continuously refining dexterous
manipulation skills through efficient data collection and targeted policy improvement.

3.1 Design Philosophy and Problem Formulation

The design philosophy of this work stems from the principle of a collaborative human-AI framework. Similar
to the work in [32] for bronchoscopic foreign body removal, where an AI-Copilot robot autonomously searches
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Figure 2 Data collection and training pipeline for DexGrasp-VLA policy and arm-hand VLA policies: (a) Tactile-based
DexGrasp-VLA policy for a five-finger dexterous hand; (b) Shared autonomy data collection; (c) End-to-end arm-hand
policy learning with Arm-Hand Feature Enhancement; (d) Corrective human-in-the-loop teleoperation.

for foreign bodies, and a physician remotely performs the extraction via teleoperation – such synergy leverages
AI for simpler search tasks for more efficient explorations, and human expertise for more difficult and delicate
removal, enhancing precision and safety. Likewise, for grasping tasks involving pinch-grasp, power-grasp, and
their derived grasping synergies – as those studied in this paper which are suitable for logistic applications –
the visual-tactile based grasping can be autonomously executed by VLA-based hand control, while humans
can perform guidance of a diversity of pre-grasp interactions and positioning, which are much more efficient
during the data collection stage.

Following the coherent collection of synchronized data, our ultimate goal is to learn an end-to-end VLA model
capable of controlling all the joints coherently for coordinated arm-hand grasping. Both DexGrasp-VLA
policy for the hand, and the end-to-end arm-hand VLA policy for the hand and arm, are fine-tuned from
π0 [5] using the open-source framework LeRobot [7].

Specifically, the model predicts a sequence of future actions conditioned on the current observation. Let
At = [at, at+1, . . . , at+H−1] denote a horizon-H action sequence. The model aims to approximate the
conditional distribution π(At | ot), where ot is the observation at time t. Each observation ot includes multiple
RGB views, a language command, and proprioceptive states: ot = [I1t , . . . , I

m
t , l, qt]. Here, Iit represents the

i-th camera image, l is the tokenized instruction, and qt is the robot’s joint state vector. All modalities are
encoded through modality-specific encoders and projected into a shared embedding space for cross-modal
reasoning and control.

3.2 DexGrasp-VLA: Autonomous Dexterous Grasping Policy

Our shared autonomy framework builds on DexGrasp-VLA, a high-performance controller that acts as a VLA
copilot for dexterous hand grasping: it autonomously executes fine-grained manipulation through multimodal
sensory feedback, relieving the human operator from control of the hand’s 12 DoFs and allowing them to
focus exclusively on arm motion (for 21-DoF hand with higher dexterity, direct teleoperation would be even
harder). To ensure robustness and generalization, DexGrasp-VLA is developed through a two-stage training
pipeline. It begins by learning a hand-only LSTM policy from a hybrid dataset consisting of parameterized
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force-control and teleoperated demonstrations. This compact, blind policy captures rich contact behaviors
using tactile sensing and enables force-adaptive grasping, allowing the dexterous hand to close quickly and
then tighten gradually for a stable grasp. The DexGrasp-VLA itself acts autonomously and is used to collect
various grasping data. Building upon this, we train a hand-centric VLA policy that further integrates visual
and tactile sensing, enabling perceptual grasping that is context-aware and reactive.

3.2.1 Force-Adaptive Grasping Policy Learned by LSTM

Figure 3 Data collection and training framework for the force-adaptive grasping policy learned via LSTM. The
datasets are collected by parameterized control (68 demos) and teleoperated human strategies (150 demos),
respectively: the former captures the implicit tactile/force-sensitive grasping, and the latter incorporates more
flexible multi-finger form closure from human teleoperation, ensuring data diversity.

To bootstrap reactive grasping under rich contact dynamics without complex visual perception, we first train
a “blind” policy [49] using solely the proprioceptive and tactile feedback. The policy uses a hybrid dataset
from a parametric force-based controller (68 demos) and human teleoperation demonstrations (150 demos),
ensuring force-sensitive compliance control and human-like grasping strategies. We use a diverse set of over
20 objects with varying shapes, sizes, weights, and materials to enhance the implicit behavior of variable
adaptive grip forces, given the proprioceptive–tactile history encapsulated by the LSTM.

Data Collection for LSTM

Data are collected through two complementary methods: 1) Force-Adaptive Position Control: A rule-based
controller generates compliant grasping at 50 Hz. At each step i, the command qc(i) is computed as:

qc(i) = qm(i) + q(0) · e−k·fz(i), (1)

where qm(i) is the measured joint position, q(0) is the initial position, k is the gain to adjust the grasping
force , and fz(i) is the fingertip resultant normal force. This control law enables rapid hand closure when no
contact is detected, and gradually increases the grip force upon contact.

2) Human Teleoperation via Retargeting: A Leap Motion sensor is used to capture human hand motions,
retargeted to the 12-DoF Xhand. Each demonstration covers the full grasping sequence from hand opening to
stable grasp, sampled at 50 Hz.

Training LSTM-based Policy via Behavior Cloning

As shown in Fig. 3, unifying the diverse behaviors from automated and teleoperation-based data, we train
a lightweight LSTM-based policy that fuses these grasping strategies into a compact state-based controller.
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This design achieves three objectives: (i) computational efficiency for real-time onboard deployment, (ii)
generalization across diverse objects and contact conditions by capturing temporal dependencies in tactile-
proprioceptive history, and (iii) scalable autonomous data generation without continuous human supervision.
Once trained, this policy serves as a unified controller bridging heterogeneous data sources and a practical
control expert to bootstrap training of vision-based VLA policies.

We implement through behavior cloning, where the input at each time step t is represented as xt =
[shand

t , fhand
t ] ∈ R39, with st = [qhand

t , τhand
t ] ∈ R24 denoting the proprioceptive state, and fhand

t ∈ R15

representing signals measured from fingertip tactile arrays. A sliding window of length T forms the sequence
input X = [xt−T+1, . . . , xt] ∈ RT×39, ensuring temporal continuity.

The policy network uses two parallel three-layer MLPs with ReLU and batch normalization to encode
proprioceptive and tactile inputs independently. Outputs are concatenated into a fused feature representation
H ∈ RT×256, passed into a single-layer LSTM (hidden layer size of 256) to capture essential temporal
dependencies for contact-rich interactions. The output is mapped through a fully connected layer to predict
the hand action at ∈ R12.

The model is optimized with a mean squared error (MSE) loss between predicted and demonstrated actions,
plus a L2 regularization:

L =
1

N

N∑
i=1

∥∥∥a(i)t − â
(i)
t

∥∥∥2
2
+ λ∥Θ∥22, (2)

where N denotes the number of samples, and the second term represents the regularization penalty.

The trained LSTM policy functions as a vision-free reactive expert, producing robust grasping trajectories
from tactile feedback. Its main role is to make large-scale autonomous data collection easier, thereby enriching
data diversity and improving VLA policy generalization. It should be noted that different object properties
such as stiffness are indirectly captured by proprioceptive–tactile history; diverse multi-finger closures stem
from human demos, while stable grip force and compliance control (without damaging or crushing objects) are
provided by the force-control method, where the settle-down force is implicitly learned by behavior cloning in
an admittance manner (Equation 1). Future dexterous hands with advanced force control could achieve this
behavior directly by controlling reference contact forces for different objects, offering higher performance.

3.2.2 Tactile-based DexGrasp-VLA πhand

Although the LSTM policy provides robust low-level force adaptation, it lacks visual perception and scene
understanding. To incorporate visual context and enable task-aware grasping (e.g., timing to grasp the target
object in clutter), we use the data autonomously collected by the LSTM policy to train a multimodal VLA
policy that integrates tactile sensing for robust dexterous grasping, as detailed in Fig. 4.

Tactile Feature Extraction

The raw tactile readings from the dexterous hand sensors are captured as a high-dimensional tensor Fraw ∈
R10×12×3 per fingertip, representing force values along the x, y, and z axes of a spatial grid over the surface
of the fingertip. Directly feeding such high-dimensional data into a VLA policy is computationally inefficient.
To overcome this, we derive two complementary tactile features that provide a compact yet rich representation
of contact conditions, as shown in Fig. 4.

The first feature, the resultant force vector f tac-f
t ∈ R5×3, is obtained by summing force components at each

fingertip’s sensor array. This offers a physically interpretable and explicit measurement of the magnitude
and direction of the net contact force per fingertip. However, this representation lacks spatial detail about
distribution of contact forces.

To capture spatially distributed contact forces, contact patterns and shear forces, we introduce a complementary
tactile feature f tac-s

t ∈ R5×128 using a convolutional autoencoder (CAE). This approach encodes the spatial-
force relationships across each fingertip into a compact latent representation. Each raw tactile sensor array
Fraw is normalized and zero-padded to form a 16× 16× 3 tactile image Fimg, where 3 channels corresponding
to the x, y, and z force components.
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Figure 4 Tactile-based DexGrasp-VLA for hand control. Two complementary tactile features are extracted:
(i) resultant forces, representing the net contact force vector at each fingertip ztac-f

t , and (ii) tactile image
latents ztac-s

t , capturing spatial contact patterns through a convolutional autoencoder.

The encoder comprises three convolutional layers: 3× 3 kernels and a stride of 2, using 32, 64, and 128 filters,
respectively. Each layer is followed by batch normalization and a ReLU activation, progressively reducing the
spatial resolution while increasing feature depth. This hierarchical encoding results in a 2× 2× 128 feature
map, which is flattened and projected to a 128-dimensional latent vector per fingertip. The decoder mirrors
this architecture using transposed convolutions to reconstruct the original tactile image from the latent code.

The CAE is trained to minimize the reconstruction loss:

Lrecon =
1

3HW

∑
c∈{x,y,z}

H∑
i=1

W∑
j=1

(
Fc,ij − F̂c,ij

)2

, (3)

where H = W = 16. This reconstruction objective ensures that the latent representation preserves the
essential spatial and directional characteristics of the contact force distribution. When combined with the
resultant force feature f tac-f

t , this spatial tactile embedding provides a more explicit and detailed representation
of the contact conditions, enabling more robust and adaptive grasping policies.

Grasping VLA Policy Learning

To integrate the extracted tactile features into the VLA framework, we transform the per-fingertip force
representations – the resultant force vector f tac-f

t and the spatial tactile embedding f tac-s
t – into embedding

vectors ztac-f
t and ztac-s

t via separate multi-layer perceptrons (MLPs), as shown in Fig. 4. These tactile
embeddings are then fused with pre-processed embeddings from other sensory modalities, including the visual
feed from the eye-in-hand camera, language instruction, and proprioceptive hand state.

The entire observation space for the hand-level VLA policy is formalized as:

ohand
t =

[
Ihand
t , lt, qhand

t , ztac-f
t , ztac-s

t

]
, (4)

where Ihand
t is the in-hand camera image, lt is the language command, qhand

t represents the hand joint state,
and ztac-f

t , ztac-s
t are tactile embeddings capturing force magnitude and spatial contact patterns, respectively.
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Figure 5 Teleoperation system and task suits. A control approach based on relative motion mapping, which
enables flexible teleoperation of diverse tasks and efficient data collection.

This multi-modal observation is passed to the action expert model, which is trained to predict hand action
sequences Ahand

t . The resulting policy is expressed as:

πhand(A
hand
t | ohand

t ), (5)

which leverages both tactile sensing and vision-language context to achieve robust, force-adaptive grasping
across a wide range of objects and conditions. The inclusion of complementary tactile cues enables the policy
to modulate the grip force in response to contact events and object properties, significantly improving the
grasping stability and success rate.

3.3 Shared Autonomy for Data Collection

Building upon DexGrasp-VLA, we introduce a shared autonomy framework for efficient data collection,
combining the autonomous grasping capability of DexGrasp-VLA with the global guidance from the human
for the pre-grasp interactions. The framework divides the shared control strategically: a human operator
teleoperates the robotic arm’s end-effector via a VR interface for the obstacle-avoidant reaching and positioning,
while the pre-trained DexGrasp-VLA policy autonomously controls the dexterous hand for fine grasping.
This approach effectively reduces the operator’s cognitive load by eliminating the need to simultaneously
coordinate both the arm and 12-DoF multi-finger hand, while preserving the naturalness and quality of the
demonstrations. The reduction of the operator’s cognitive load will be more substantial when it comes to
bimanual operation with the same arm-hand setting.

3.3.1 VR-Based Arm Teleoperation System

We implement a control paradigm based on relative motion mapping, built upon the XRoboToolkit [51]
framework. This system is capable of flexibly handling diverse robotic tasks across short- and long-horizon
operations, facilitated by a high-performance teleoperation framework with OpenXR support (90fps, <100ms
latency) that enables real-time control and high-frequency data collection (at 30Hz), as shown in Fig. 5.
Specifically, the tracking of the robot arm’s end-effector is initiated through a “clutch mechanism” triggered
by the user holding the controller’s grip button. Upon activation, the initial poses of both the VR’s controller,
TVR,0 ∈ SE(3), and the robot arm’s end-effector, Trobot,0 ∈ SE(3), are recorded at the same time. Then, the
change of poses, i.e., delta transformation (∆T ) of the VR’s controller from its initial pose TVR,0 to its current
pose TVR,t, is continuously measured. This transformation is then composed with the initial pose of the robot
arm (i.e., the end-effector pose at the moment when teleoperation is engaged) to calculate the new target
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pose, Trobot,t. This relationship is formulated as:

Trobot,t = Trobot,0 · (T−1
VR,0 · TVR,t). (6)

An Inverse Kinematics (IK) solver is used to compute the target joint angles from this target pose, ensuring
that the end-effector motion consistently maps the VR controller’s displacement. Specifically, we formulate the
inverse kinematics as a velocity-level Quadratic Program (QP). This optimization problem is solved using the
PlaCo [44] library, which is built on the Pinocchio [8] rigid body dynamics framework. The QP is formulated
using the joint velocities q̇ as optimization variables to find the optimal solution that minimizes the weighted
sum of squared task errors, subject to a set of linear constraints:

min
q̇

N∑
i=1

wi ∥Ji(q)q̇ + ei(q)∥2 , s.t. l ≤ C(q)q̇ ≤ u.

Here, q denotes the manipulator’s joint configuration. Each task i is characterized by its residual function
ei(q), task Jacobian Ji(q), and a corresponding scalar weight wi. The matrix C(q) represents additional
hard constraints imposed on the system. Finally, the joint configuration q is obtained through numerical
integration. At each control time step t, the above QP is solved to compute the optimal joint velocity q̇. This
optimal velocity is then used to update the new joint angles for the next time step:

qt+1 = qt + q̇ ∗∆t, (7)

where ∆t is the sampling time, and qt are the previous joint angles. This process iterates until the task errors
∥ei(q)∥ are below a threshold or a terminal condition is met. The VR-based teleoperation system captures and
maps the motions of the VR controller in real time to the robotic arm’s motion. This setup enables natural
and responsive arm control in 3D space, significantly improving demonstration efficiency and precision.

3.3.2 Coordinated Arm-Hand Data Collection

For data collection, we engineered a multi-thread control architecture that enables seamless integration of
human teleoperation (90 Hz) with autonomous policy execution (30 Hz), as well as streaming and saving
time-synchronized data (30 Hz). In this setup, the human operator controls the arm’s 6-DoF end-effector
motion through a VR interface while the DexGrasp-VLA policy runs concurrently, generating appropriate
grasping actions based on real-time visual and tactile feedback. This parallel execution mechanism preserves
natural temporal coordination between arm’s reaching and hand’s grasping phases, enabling efficient collection
of synegized arm-hand demonstrations. The collected datasets contain temporally synchronized observations
and actions from both control sources, formally represented as:

Duni = {(ouni
t , aarm

t , ahand
t )}Tt=1; aarm

t ∼ pteleop, ahand
t ∼ πhand(· | ohand

t ), (8)

where the combined observation vector ouni
t = [It, lt, q

arm
t , qhand

t ] incorporates multi-view RGB images It
(including static scene cameras and the eye-in-hand camera), language instruction lt, and the joint states of
both the arm qarm

t and hand qhand
t .

This dataset structure provides several key advantages: (i) it maintains the natural coordination synergies
between arm and hand movements that are characterized within human demonstration; (ii) it enables the
learning algorithm to discover implicit coordination strategies from the demonstrated trajectories; and (iii)
the rich multimodal observations support learning robust visuomotor policies that can generalize across object
properties and environmental conditions. The dataset Duni serves as the foundation for training end-to-end
arm-hand manipulation policies that effectively combine human guidance for coarse macro-motions and the
autonomous grasping for fine micro-movements of multiple fingers.

3.4 Learning End-to-End Arm-Hand VLA Policy πuni
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Figure 6 Arm-hand feature enhancement for the VLA policy.

Building upon the arm-hand demonstration
data collected through shared autonomy, we
perform SFT of a pre-trained VLA model
to learn an arm-hand coordinated dexterous
grasping policy πuni(Auni

t | ouni
t ). A key chal-

lenge lies in effectively handling the different
and complementary characteristics of arm and
hand motion. Our prior research efforts found
that a vanilla version of SFT would only lead
to limited performance, primarily because it
fails to explicitly disentangle and represent
the unique dynamics of the arm and hand,
while also capturing their shared task context.

To overcome this limitation, we developed the
technical improvement that has no structural
alteration as for the fine-tuning stage – the
Arm-Hand Feature Enhancement module. It
extends the base architecture with explicit
mechanisms to capture both shared contex-
tual information relevant to coordinated arm-
hand tasks, and distinct individual features that characterize arm and hand dynamics, respectively. Hence, it
enables more effective and robust arm-hand coordination during dexterous grasping, for example, even under
visual occlusion of one camera.

3.4.1 Arm-Hand Feature Enhancement

As illustrated in Fig. 6, our architecture builds upon the base π0 model, which employs PaliGemma and Gemma
Expert to encode multi-modal observations (including visual inputs, language instructions, and proprioceptive
states) into a shared task representation zshare

t ∈ Rds . While this shared representation captures global task
context, its native architecture is not built for controlling high-DoF dexterous hands and thus does not account
for the distinct kinematics and dynamics of arm and hand movements.

Reasoning from the fundamental differences in kinematic and dynamic interactions and functional roles, we
developed the Arm-Hand Feature Enhancement module to resolve this issue, which explicitly models the
complementary roles of macro-movement (arm) and micro-manipulation (hand). The shared representation
zshare
t is passed through two dedicated multi-layer perceptrons (MLPs): Earm and Ehand. These produce

limb-specific latent features zarm
t ∈ Rda and zhand

t ∈ Rdh , respectively.

To ensure that these features capture meaningful limb-specific characteristics, we employ auxiliary predic-
tion heads Harm and Hhand, which are trained to predict sub-actions Âarm

t and Âhand
t directly from their

corresponding features. This auxiliary supervised learning through encoding-decoding ensures the features
capture relevant underlying dynamics of their respective limbs (arm or hand), such as long-horizon reaching
trajectories for the arm, and contact-rich and compliant motions for the hand. For final action prediction, the
main action head Hmain takes as input the fused representation zfused

t = [zshare
t , zarm

t , zhand
t ], and outputs the

unified action Âuni
t = [Âarm

t , Âhand
t ]. The use of zshare

t preserves the global task context, while limb-specific
features enable fine-grained adaptive control. This design allows the policy to balance the overarching task
strategy with limb-level precision, resulting in coordinated and naturalistic motion.

3.4.2 Learning Objective

The model is optimized using a composite loss function that combines a main coordination loss with two
auxiliary losses tailored to arm and hand specificity.

Main Loss The primary objective is derived from the conditional flow matching, as used in π0, and is applied
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Figure 7 Corrective human-in-the-loop teleoperation system enables efficient and effective human intervention
to collect corner case data during the deployment phase, iteratively improving the policy robustness.

to the full action sequence Auni
t = (Aarm

t ,Ahand
t ):

Lτ
main(θ) = E

[∥∥∥Hmain(z
fused
t )− u(Aτ,uni

t | Auni
t )

∥∥∥2] , (9)

where Aτ
t = τAt + (1− τ)ϵ is a noise-corrupted action chunk, u(Aτ

t | At) = ϵ−At is the target vector field.

Auxiliary Expert Losses

Two auxiliary losses are used to reinforce the disentanglement and specialization of arm and hand:

Lτ
hand(θ) = E

[∥∥∥Hhand(z
hand
t )− uhand(Aτ,hand

t | Ahand
t )

∥∥∥2] , (10)

Lτ
arm(θ) = E

[
∥Harm(zarm

t )− uarm(Aτ,arm
t | Aarm

t )∥2
]
. (11)

These losses ensure that the dedicated features zarm
t and zhand

t can predict their corresponding limb actions.

Total Loss

The overall training objective is a weighted sum:

Ltotal = Lmain + λ (Lhand + Larm) , (12)

where λ is a hyperparameter that balances between global coordination and limb-specific specialization. This
objective encourages the model to learn a representation that is both integrative and limb-aware, leading to
more robust and generalizable arm-hand coordination.

3.5 Corrective Human-in-the-Loop Teleoperation System

To enable robust deployment in unstructured environments where distribution shifts and long-tail scenarios
are inevitable, as shown in Fig. 7, we implement a corrective human-in-the-loop teleoperation system with
an incremental supervised fine-tuning (SFT) framework. This system enables continuous policy adaptation
through real-world interaction and targeted data collection.

During deployment, the unified arm-hand policy πuni operates autonomously. Successful trajectories are
recorded as positive demonstrations. When failures occur, the system toggles a shared-autonomy mode
where a human operator intervenes via teleoperation to recover from failures. Both the failure episodes and
subsequent recovery trajectories are curated as corrective demonstrations.
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Formally, at each iteration k, the policy π
(k)
uni collects a dataset D(k) = D(k)

success ∪ D(k)
corrective, where D(k)

success

contains the data from successful autonomous policy rollouts, and D(k)
corrective contains the data from human-

guided failure recoveries.

Equation 13 delineates the composition of the training dataset, where corrective examples include both the
failure context and the human-provided recovery strategy, enabling the policy to learn error detection and
correction strategies:

D(k) = {(ot, at)}︸ ︷︷ ︸
D(k)

success

∪
{(

o
(fail)
t , a

(fail)
t , o

(rec)
t , a

(rec)
t

)}
︸ ︷︷ ︸

D(k)
corrective

. (13)

We use the brief notation below (instead of the argmin form) to notate the policy update:

π
(k+1)
uni = SFT

(
π0;Duni ∪ D(k)

)
. (14)

This iterative process creates a self-improving cycle, where the policy progressively learns to handle increasingly
challenging scenarios with an augmented dataset that has better coverage. The corrective demonstrations
provide crucial learning signals for failure recovery, while successful trajectories reinforce robust behaviors.
It shall be noted that the new model still directly derives from the original foundation model π0, while the
dataset has been constantly curated as Duni ∪ D(k), where D(k) is updated via Equation 13.

The key advantage of this approach is its ability to efficiently address the long-tail problem in robotic
manipulation. By focusing human intervention only on failure cases, it maximizes data collection efficiency
while ensuring the policy’s coverage on downstream tasks.

4 Results

4.1 Experimental Settings

4.1.1 Manipulation Platform

Figure 8 Hardware setup of the integrated robotic system. (1) Dexterous Manipulator: A 6-DoF UR3e arm with a
five-finger 12-DoF Xhand, featuring fingertip tactile sensing for compliant manipulation. (2) Perception Suite: Three
RGB-D cameras (two static, one wrist-mounted) for global scene perception and close-range visual observation.
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Our experimental platform, consisting of an integrated robotic manipulator with a hand and a multi-sensor
perception system (as shown in Fig. 8), provides the necessary physical and sensory capabilities to develop
and evaluate our shared autonomy and learning algorithms for dexterous manipulation.

Robot System: The robot system consists of a UR3e collaborative robotic arm (6-DoF) mounted with a
five-finger Xhand (12-DoF) [2]. Each fingertip of the Xhand incorporates an array of 120 tri-axial force sensors,
providing high-resolution 3D contact feedback essential for compliant grasps and reactive control.

Perception System: The perception system employs 3 RGB-D cameras: two fixed Intel RealSense D435i
cameras for global scene observation (binocular vision) and one wrist-mounted Intel RealSense D405 camera
for eye-in-hand visual feeds needed for close-range manipulation.

4.1.2 Datasets

Figure 9 Force-adaptive grasping of different objects by the LSTM-based policy with tactile sensing. Using the tactile
feedback, the LSTM policy learns admittance control by generating position control commands to regulate contact
forces at fingertips, enabling firm grasps of very light delicate objects (paper cup, soft-boiled egg) as well as heavy
rigid ones (a 1.2 kg of an unmounted robotic hand).

We construct four distinct datasets to support the different training stages of our framework, each designed
for a specific learning objective.

LSTM Pretraining Dataset: For training the initial blind grasping policy, we collect a hybrid dataset combining
150 human teleoperation demonstrations via Leap Motion retargeting (ie.e, retargeting from human hand to
robot hand), and 68 autonomous trajectories generated by the force-adaptive controller (See Section 3.2.1
and Equation 1). This dataset focuses on individual finger coordination and force modulation, containing
time-series data of joint positions, torques, and tactile readings. As shown in Fig. 9, the trained LSTM policy
can “blindly” grasp various objects with force-adaptive capabilities using tactile sensing.

DexGrasp-VLA Hand Policy Dataset (Dhand): We used handhold equipment to mount both the robot hand
and the eye-in-hand camera on the handle, then let the human operator hold the robot hand and trigger the
LSTM policy to grasp diverse objects in clutter. In this manner, a dataset consisting of 180 successful grasping
trajectories is collected in cluttered scenes containing 60 different objects with diverse shapes and materials.
Each trajectory streams synchronized eye-in-hand camera images, proprioceptive states, high-dimensional
tactile data, and the corresponding action commands.

End-to-end Arm-Hand VLA Dataset (Duni): As a pilot study, we collected 100 coordinated arm-hand demon-
strations through our shared autonomy framework for end-to-end arm-hand policy training. These trajectories
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Figure 10 Demonstration of the DexGrasp-VLA policy for autonomous table bussing in clutter. The dexterous hand
is operated in a handheld setup, and the DexGrasp-VLA policy performs autonomous and robust hand-level grasping
based on its tactile and visual feedback.

cover 20 common household objects in single-object scenes and include multi-view RGB observations, language
instructions, and synchronized arm and hand action sequences.

Corrective Intervention Datasets (Dorient, Dcorner): To support iterative policy refinement, we constructed
two specialized datasets through human-in-the-loop corrective teleoperation. (1) Dorient: 50 trajectories
focused on recovering from orientation-specific grasping failures. (2) Dcorner: 50 trajectories addressing various
challenging corner-case scenarios. These datasets are used to augment the primary training data and enhance
policy robustness through targeted fine-tuning.

All the aforementioned datasets include synchronized multi-modal observations (RGB images, proprioceptive
states, and tactile readings) and action sequences at 30Hz, ensuring comprehensive coverage for learning
complex manipulation behaviors across different training stages.

4.2 Main Results

4.2.1 Grasping Performance of the DexGrasp-VLA Policy πhand

We evaluate the hand-only DexGrasp-VLA policy in cluttered tabletop scenarios, where the task requires
picking and removing all the objects in clutter from the table. To facilitate testing, particularly for ablation
studies on the hand policy itself, we adopt a handheld setup: the human operator physically holds and moves
the Xhand mounted on a handle to reach various objects, while the DexGrasp-VLA policy runs autonomously
to decide when and how to execute grasping motions based on real-time visual, tactile, and proprioceptive
inputs. This setup decouples the grasping capability of the hand from the errors and failures from the reaching
control of the robotic arm, which allows for more specific evaluation on the finger-level DexGrasp-VLA policy.

Fig. 10 shows representative example trials. The evaluation covers five distinct scenes containing more than
50 objects, where a bucket of stocked objects was randomly dumped on the table, including both seen and
unseen items with a large variation in size, color, shape, and material. The policy achieves a 95.5% overall
success rate, consistently clearing nearly all objects in each scene. These results confirm that the hand-level
VLA policy robustly handles cluttered settings and generalizes across diverse object properties. Using its
autonomous performance and generalization ability, we integrated this policy as the VLA Copilot within
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Figure 11 Grasping and placing various objects via end-to-end (arm-hand) VLA policies with a dexterous hand. (See
Appendix B for additional real robot tests.)

our Shared Autonomy framework. This allows efficient and scalable collection of high-quality, generalizable
grasping demonstrations with minimal human effort, by exploiting the policy’s reliable grasping ability under
real-world variability.

4.2.2 Grasping Performance of the VLA Policy πuni

Table 1 Success rates (%) of the final end-to-end arm–hand
VLA policy πuni-final across 50 objects.

Methods Seen objects Unseen objects Average

πuni-final 91.7 85.6 88.7

We evaluate the end-to-end arm-hand VLA policy,
πuni, on a pick-and-place task involving 20 seen
objects and more than 30 unseen objects with di-
verse shapes, sizes, and materials. Each object is
tested in 3 trials with randomized positions and
orientations within a 40cm × 40cm workspace. In
each trial, the robot attempts to grasp the object
and place it in a target basket. A trial is deemed successful if the object is securely grasped and accurately
placed without slipping or dropping. As summarized in Table 1, πuni achieves an average success rate of 88.7%
across all 50 objects, with 91.7% on seen objects and 85.6% on unseen objects. More results of dexterous
grasping can be found in Appendix B.2.

Fig. 11 demonstrates that the policy delivers consistent and reliable performance under significant object
variations. The model demonstrates high performance consistently on familiar objects, reflecting effective
hand-arm coordination and stable grasping capabilities. Furthermore, πuni generalizes robustly to novel
objects and challenging orientations, enabling reliable pick-and-place across diverse object geometries and
configurations (See more results across different robotic end-effector in logistics packing and industrial assembly
in Appendix B).

It is important to note that these results were achieved with an initial proof-of-concept of the full stack, without
particular engineering efforts. Therefore, it is realistic to anticipate that with more dedicated investments in
optimizing the robotic hardware and its software, the system-level performance built on the VLA control
architecture can reach the next level of near or above 95% success rate, and thus be ready for real-world
deployments, where the > 95% success rate suffices and can be adopted in the industrial Standard Operating
Procedure (SOP).
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Figure 12 Grasping diverse objects with variations in size, color, and material properties.

4.3 Ablation study

4.3.1 Effectiveness of Tactile Sensing in the VLA Policy πhand

To quantitatively evaluate the contribution of tactile sensing to grasp stability, we designed a two-phase test.
The robot must first successfully grasp the object, then maintain a secure hold for 3 seconds with full vision,
followed by 10 seconds under complete visual occlusion. A trial is considered successful only if the object
is retained throughout both phases without being dropped. This protocol specifically evaluates the policy’s
dependency on tactile feedback when visual input is unavailable.

As reported in Table 2, tactile input is critical for robustness. Without any tactile feedback, the success
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Figure 13 Effectiveness of tactile-based DexGrasp-VLA πhand and robust grasping performance with tactile sensing
under camera occlusion: (a) Without the sense of touch (tactile), the object slips while camera is occluded; (b) With
dual tactile features, the policy demonstrates a sustained, stable grasp throughout the test without any slippage, even
under external perturbations (bumping against the table at 9s, and intense up-down shaking from 9s-12s).

Table 2 Success rates of dexterous grasping policy πhand across 10 everyday objects under different tactile configurations.

Methods Can Bottle 1 Bottle 2 Apple Orange Banana Bowl Mug Ball Gamepad Average

πhand-origin(π0 [5]) 1/10 2/10 2/10 0/10 5/10 0/10 1/10 5/10 3/10 2/10 21%
πhand-tacf 8/10 8/10 7/10 6/10 9/10 4/10 7/10 9/10 6/10 6/10 70%

πhand-tacf-tacs 8/10 10/10 10/10 8/10 10/10 7/10 9/10 10/10 10/10 8/10 90%

rate drops to 21%. Using only resultant force features (f tac-f) improves performance to 70%, and further
incorporating both force and spatial tactile features (f tac-f and f tac-s) achieves 90% success. This shows that
tactile sensing is not only beneficial but also essential for sustaining stable grasps under perceptual uncertainty.
The spatial tactile features enable the policy to detect and compensate for local contact slippage and shifts,
while the force magnitude features are used to keep an appropriate level of grip forces.

Fig. 13 illustrates a clear comparison: under visual occlusion, policies without tactile feedback fail rapidly due
to the lack of visuals, whereas the dual-tactile policy maintains a firm grip under external perturbations (e.g.,
shaking or hitting the table). By visualizing tactile contacts (see the cases in Fig. 14) in real time, we can see
that the adaptive adjusting of forces across the fingertips by the tactile-based policy. These results highlight
that tactile feedback adds critical additional information to vision, enabling continuous modulation of grip
forces and robust manipulation even when vision is degraded or occluded.

4.3.2 Effectiveness of Arm-Hand Feature Enhancement in the VLA Policy πuni

We conducted a comprehensive ablation study in 3 experimental settings, as shown in Table 3, to evaluate the
effectiveness of the proposed Arm-Hand Feature Enhancement module. The enhanced policy πuni-enhance is
compared against the baseline πuni-origin(initialized from π0 [5]), with both models fine-tuned on the same
dataset Duni. Results across three settings highlight consistent performance gains, and the comparison result
is shown in Fig. 15. On the main Xhand platform, πuni-enhance achieves a 95% success rate compared to 88% for
the baseline, confirming improved coordination and grasp stability. When transferred to the RY-H2 dexterous
hand [1], the enhanced policy outperforms the baseline by 10% (81% vs. 71%), showing that the framework is
applicable to different hardware that varies in kinematics and actuation (See more specifications of dexterous
hands in Appendix A.2).
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Figure 14 Representative cases of grasping cylindrical and spherical objects, visualizing the distribution of
surface contacts measured by tactile sensors at fingertips.

Table 3 Grasp success rates (%) on 10 objects of the end-
to-end arm–hand VLA policy πuni.

Methods XHand RY-H2 XHand-Occlude

πuni-origin (π0 [5]) 88 71 19
πuni-enhance 95 81 58

To further assess the robustness to perceptual
degradation, the right-view camera is occluded, sig-
nificantly impairing visual cues near contact regions.
Under this challenging condition, compared to the
baseline performance that drops drastically to 19%,
our πuni-enhance still maintains a 58% success rate.

These consistent gains and advantageous robust-
ness come from the explicit disentanglement of arm
and hand representations. Using limb-specific feature pathways, the module prevents the fused representation
from being dominated by global visual cues alone, which are especially vulnerable under occlusion. Instead,
the arm branch encodes and inherits a large portion of its kinematics information, which remains reliable even
with partial visual loss, while the hand branch captures fine-grained contact information. This complementary
encoding allows the policy to preserve proprioception more specifically, thereby being less sensitive to vision
degradation and maintaining stable grasp execution.

In contrast, the baseline representation entangles all modalities into a single latent vector, making it harder
to adaptively reweight information sources when one modality becomes unreliable. These results unveil that
our proposed feature enhancement module not only improves coordination on the main Xhand platform, but
also strengthens generalization across different hardware and enhances resilience to sensory uncertainty.

4.3.3 Effectiveness of Corrective Teleoperation

To evaluate the efficacy of our corrective human-in-the-loop teleoperation system, we designed a benchmark
test with an expanded workspace (40 × 40 cm) containing objects arranged in a 3×3 grid with randomized
orientations (upright and inverted). For a quantified evaluation, this setup has sufficient diversity in object
placement and configuration, and presents significant challenges for policy generalization. As shown in Fig. 16,
the initial πuni-enhance model, trained only on Duni, failed on specific orientations and all corner-case scenarios.

After fine-tuning with 50 corrective trajectories targeting orientation failures (Dorient), the resulting πuni-orient
model showed significantly improved handling of varied orientations and even demonstrated emergent error
recovery behaviors. However, it remained ineffective for other corner cases, particularly those involving
previously unseen locations that are out of distribution in the original training dataset. As a data-driven
paradigm, a subsequent fine-tuning iteration with an additional 50 trajectories that specifically address
these corner-case scenarios (Dcorner) produced a better version of a final model, πuni-final, which successfully
generalized across all test conditions.

Despite the small-scale benchmark of three policies across five objects in the easy-to-quantify setup, the
results of success rates, e.g., from 20% to 50% differences, are very indicative to validate that our Corrective
Teleoperation system can identify and address specific failure modes through targeted data collection. More
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Figure 15 Effectiveness of the Arm-Hand Feature Enhancement module. Under limited perception with a
blocked camera, the enhanced policy enforces complementary roles: arm for reaching, and hand for grasping.
This leads to more stable execution and a substantially higher grasp success rate than the baseline VLA. The
approach generalizes across different dexterous hands, improving arm–hand coordination and grasp robustness
on challenging objects.

Figure 16 Benchmark of iterative improvements enabled by corrective teleoperation. The initial policy
πuni-enhance struggles with orientation and corner-case failures, the orientation-tuned policy πuni-orient improves
generalization to varied poses, and the final policy πuni-final achieves robust success across all scenarios through
targeted corrective demonstrations.

importantly, the results clearly show that iterative injection of human corrective demonstrations significantly
enhances the robustness of the policy, enabling a form of continuous adaptation to complex real-world scenarios
that were not covered beforehand, or difficult to foresee and prepare in advance during the initial training
data collection.

To be truly useful and impactful in the real world, such a VLA-based learning framework must perform
robustly on a variety of tasks and data collection approaches. To this end, we further validated its generality
in both long-horizon sequential tasks and an industrial peg-in-hole assembly task. The latter, in particular,
demands more spatial precision (i.e., <1-1.5 mm) beyond standard pick-and-place, involving complex contacts
and fine motion sequences.

Through these studies, we confirmed that the corrective mechanism is effective not only with human tele-
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operation but also with alternative correction frameworks, such as fully automated motion planning. In all
cases, the framework can integrate targeted corrections from diverse data sources to efficiently improve policy
performance. Additional experimental setups and results from the conventional robotic gripper and automated
motion planning are provided in Appendix B.3. Together, these findings show that our method offers a flexible
and effective strategy for adapting and refining VLA-based policies in complex, real-world settings, showing
the potential for broad applicability across task categories, end-effector morphologies (2-finger gripper and
dexterous hands), corrective intervention, data augmentation and model re-training.

5 Discussion, Future Work and Concluding Remarks

5.1 Discussion

This work presents a VLA data collection and training framework via Shared Autonomy which combines
human teleoperation for global arm motion with an autonomous DexGrasp-VLA control of the hand that
uses tactile feedback for adaptive grasping. This design reduces operator cognitive load and enables efficient
collection of high-quality demonstrations, making it suitable for agile algorithmic developments. To resolve
the challenge of fine action control of the multi-finger hand and enhance system robustness, we propose an
Arm–Hand Feature Enhancement module and a Corrective Human-in-the-Loop Teleoperation, which altogether
support fast policy iteration, policy re-training, and continual improvement. Experiments validated the
effectiveness of this framework, achieving about 90% grasping success rate in general among more than 50
seen and unseen objects, showcasing both efficiency and generalization.

In this work, we focus on grasping tasks as a fundamental capability in robotic manipulation. The high
degree-of-freedom and complex multi-contact dynamics of five-finger dexterous hands impose a significant
challenge, where numerous factors, from tactile sensing to arm-hand coordination, are deeply intertwined.
Therefore, grasping serves as an ideal testbed, providing a well-defined yet challenging benchmark to validate
shared autonomy, multimodal policy learning, and corrective teleoperation under diverse physical contact
conditions. It allows for a methodological focus to systematically isolate and investigate the role of each core
component, such as a more structured algorithmic integration of multimodal sensorimotor pathways for tactile
sensing and different techniques for shared autonomy, without involving the extra complexity of dexterous
in-hand manipulation. This focused approach enables a clear validation of our framework, establishing a
foundational understanding of multimodal policy learning that paves the way for developing and scaling up to
more sophisticated large-scale foundational models with human-level dexterity.

Despite these promising results as a zero-to-one proof of concept, limitations remain: the current system
has not been tested in more complex long-horizon manipulation, such as tool use or in-hand reorientation;
the full tactile integration, while critical for grasp stability, remains challenging due to noise and feature
misalignment with arm movements (reaching motions without touching); and corrective mechanism and
continual improvements still rely on human intervention, which limits the scalability and thus fully autonomous
approaches are clearly more promising at a larger scale.

5.2 Future Work

The proposed architecture and methodology are designed with inherent extensibility, which allows a cohesive
way for future upgrade with more advanced hardware, e.g., the VLA copilot system and the teleoperation
are combinatorial. The shared autonomy interface naturally separates high-level human guidance from
low-level execution, allowing new VLA copilots for various skills to be integrated within the same framework,
for example, more sophisticated dexterous in-hand manipulation with multi-finger hands. Similarly, the
policy structure, particularly the arm–hand feature enhancement, is task-agnostic and can adapt to diverse
demonstrations, while the corrective teleoperation framework applies readily to new tasks.

Future work would call for a community effort to improve the VLA paradigm in multiple directions. This
framework can be extended to a broader set of manipulation skills, including object re-orientation, insertion,
and long-horizon tasks, by developing or combining additional specialized AI-driven copilots. We will also
investigate advanced tactile representation learning techniques to better fuse tactile, visual, and proprioceptive
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inputs, for example, through selective routing or conditional gating, and explore auxiliary prediction losses
inspired by the feature enhancement module.

Furthermore, future work can focus on autonomous error detection and composite recovery strategies. First,
the human-in-the-loop teleoperation correction phase can be replaced by an autonomous error recovery module.
Reinforcement learning and self-supervised adaptation can be used to train a model to autonomously detect
and recover from errors, thus reducing the dependence on human intervention. Second, the coordination and
switching of control authority between the human and the robot can be dynamically and seamlessly adjusted
based on the perception of the context, such as task difficulty, environmental safety, and human state. This
perceptual capability would be achieved via VLMs, and allow the system to autonomously determine when it
can autonomously operate error recovery by itself, and when it needs human input or intervention.

5.3 Conclusion

In summary, this study serves as a practical handbook for developing an effective framework for dexterous
manipulation learning, which is validated through extensive grasping experiments and is suitable for agile
research development with minimal requirements of manpower. Such a framework demonstrates its effectiveness
at a system-level of engineering and integration, using techniques ranging from force-adaptive compliance
control, shared autonomy, human-in-the-loop teleoperation, VR-based human-robot interface, to multimodal
policy learning such as VLA fine-tuning in particular. As the whole is greater than the sum of its parts,
the framework demonstrates strong performance, extensibility, and adaptability — all achieved at low
computational cost and with a short development cycle of fine-tuning.

Moreover, it also suggests a potential new step change in VLA-based physical AI systems, which can be
leveraged by VLMs’ perceptual understanding ability to match human-level cognition, and thus to deal with
complicated scenarios, where a repertoire of autonomous robot skills and human-in-the-loop mechanism can
be synergistically combined for deploying such technologies in real-world industrial sectors.
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Appendix

A Implementation Details

A.1 Model Fine-Tuning

All Vision-Language-Action (VLA) policies in this work are derived from a pre-trained base model π0. The
fine-tuning process is conducted as follows:

• Parameter Update: For both the hand-only and the arm-hand VLA policies, we perform full-parameter
fine-tuning on π0, with the exception of the visual encoder, which remains frozen.

• Task Instruction: The specific language instruction provided to the model is tailored to the task:

– Instruction for the hand-only VLA policy: pick up the object on the table and place it elsewhere.

– Instruction for the arm-hand VLA policy: pick up the object on the table and place it in the box.

A.2 Hardware Platforms and Real-World Deployment

(a) (b)

Figure 17 Cross-embodiment validation using two different robotic hands for both the Shared Autonomy framework
and the training of end-to-end VLA models: (a) XHAND1 hand [2], and (b) RY-H2 hand [1].

As the research community embraces a range of different designs of hardware, we validated the applicability
of our proposed framework using two different dexterous robotic hands which are quite representative (one
is fully actuated and the other is underactuated): (1) Xhand, a high-performance 12-DoF dexterous robotic
hand with fingertip tactile sensing, as the main hardware; (2) RY-H2, a fast 11-DoF dexterous hand (6 active
DoF and 5 under-actuated DoF) with joint current sensing featured by a quick open-close cycle of 0.4s.

The Xhand provides a high-bandwidth motor control interface for learning-based control, joint-level state
data, and high-resolution tactile feedback [2]. Its five fingertips are equipped with 270◦ encirclement of tactile
array sensors, providing 120 channels in total for the 3-dimensional force data per fingertip, providing tactile
perception of contact geometry and distributed forces. The motors offer multiple control modes, including
position, force, and hybrid force-position control, running at a control frequency of 83 Hz over an EtherCAT.
With a fingertip grip force of 15 N and a maximum grip force of 80 N, the hand can perform both precise and
powerful grasps. Its design of back-drivable actuation and a lifetime of 1000000 grasp cycles, makes it suitable
for the extensive trial-and-error required in data collection and testing trials of VLA policies.

The RY-H2 hand is a five-finger under-actuated dexterous hand featured by high-speed grasping [1]. Totaling
11 joints, with 6 active and 5 passive degrees of freedom, it is actuated by high-power-density brushless DC
motors. This design enables a rapid open-close cycle time of 0.4s and a high maximum grip force of 140N.
With a lightweight of 0.6kg, it is suitable for dynamic tasks requiring both speed and power, and secondary
algorithmic development for industrial and research applications.
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During the evaluation phase on these physical robot hardware, the same setting was configured:

• Model Checkpoint: All VLA models evaluated in the main experiments and the appendix are the
checkpoints saved at 80,000 training steps.

• Control Frequency: The robot arm and hand are controlled by the policy at 30 Hz control frequency.

A.3 Network Architecture Specifications

The Arm-Hand Feature Enhancement module extends the base architecture with dedicated components for
limb-specific feature extraction. The arm encoder Earm and the hand encoder Ehand are both implemented as a
two-layer MLP. Each encoder takes the shared representation zshare

t ∈ Rds as input and produces limb-specific
features of reduced dimensionality zarm

t ∈ Rds/2 and zhand
t ∈ Rds/2 through successive linear transformations

separated by the Mish activation functions.

The auxiliary prediction heads Harm and Hhand are implemented as single linear layers that map the limb-
specific features to action predictions of a fixed max dimension, with selective supervision applied only to the
indices corresponding to each limb’s actual degrees of freedom.

B Additional Results

B.1 Effectiveness of Shared Autonomy Data Collection

Table 4 Data collection efficiency and training/deploying expenditure of shared autonomy vs full teleoperation.

Methods Main Collection Corrective Collection Fine-Tuning Time Deploying Time

Shared Autonomy 110/hour/person 100/hour/person 4 hours (on 4 GPUs) 10–15 minutes (20 trials)
Full Teleoperation 90/hour/person 80/hour/person NA NA

Our Shared Autonomy framework demonstrates a clear advantage in data collection efficiency. As shown in
Table 4, it allows a single operator to collect 110 trajectories per hour for the main dataset, compared to 90
with full teleoperation. This 25% increase in collection rate, sustained during corrective data collection (100
vs. 80 trajectories/hour), directly translates to faster policy improvement cycles and validates the framework’s
effectiveness.

This high-quality data allows for efficient policy refinement: a fine-tuning run (20k steps on 4 GPUs) completes
in 4 hours, and deploying the refined policy for 20 evaluation trials takes only 10–15 minutes. This end-to-end
efficiency shows the feasibility of our approach for rapid policy training and iteration. For skilled operators,
collecting more than 100 demos per hour per person is easily and readily achievable, and most domain-specific
cases usually require around 50 demos only, which enables a development-to-deployment cycle of one day only.

B.2 Additional Results of End-to-End Adaptive Arm-Hand Grasping

This section presents additional qualitative results, and Fig. 18 to Fig. 19 demonstrate the robustness and
generalization capability of our end-to-end VLA policy in additional grasping scenarios.

Figure 18 Grasping performance across different object orientations.
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Figure 19 Grasping robustness tested at various spatial locations within the workspace.

B.2.1 Effectiveness of Tactile Sensing in πuni

To evaluate the impact of tactile sensing on the full arm-hand policy, we conducted an additional experiment
under the same conditions as our main Xhand evaluation (20×20 cm workspace, 10 objects, 10 trials each). The
tactile representation and integration method followed the same approach as in the hand-only DexGrasp-VLA
policy. Despite the tactile sensing provides significant benefits to the hand-only policy πhand, we found
that incorporating these same tactile features into the unified arm-hand policy πuni does not consistently
improve performance. In other words, tactile sensing is more effective when used in combination with local
visual sensing for the hand-only DexGrasp VLA policy, but the direct incorporation of tactile sensing in the
unified arm-hand policy πuni does not yield positive results, at least from this initial study. Specifically, the
enhanced policy with tactile input (πuni-enhance-tac) achieved a success rate of 82%, compared to 95% for the
visual-proprioceptive only policy (πuni-enhance) trained by datasets collected by shared autonomy.

This performance degradation is likely due to the different functional roles for controlling the arm and the
hand respectively. To the best of our knowledge, we hypothesize that the arm primarily executes reaching
motions that rely more on visual and proprioceptive feedback for spatial motions, while tactile signals are
most relevant for fine-grained grasping and in-hand manipulation. Uniformly incorporating tactile input
throughout the entire arm-hand trajectory may introduce irrelevant information like “noises” during arm
movement phases, particularly from incidental environmental contacts (e.g., table collisions or unintended
fingertip brushing) that occur during reaching. These transient and often misleading tactile signals appear to
interfere with the policy’s ability to maintain robust arm-centric coordination.

The above results suggest that future work should explore more structured tactile integration strategies rather
than uniform feature fusion throughout the entire motion. Promising directions include selective sensor gating
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mechanisms that activate tactile processing only during grasping phases, or attention-based architectures that
learn to dynamically weight tactile input based on the current task phase. Such approaches could preserve
the benefits of tactile sensing for manipulation, while avoiding the performance degradation observed during
arm movements.

B.2.2 Additional Results of Corrective Control for Refining a VLA Policy

This appendix extends the experimental validation of our corrective framework beyond the pick-and-place
tasks presented in the main text. Together with the shared autonomy approach used for grasping tasks in
the main experiments, the additional studies here, which employed teleoperation for long-horizon tasks and
motion planning for industrial assembly, provide comprehensive evidence for the generality of our corrective
mechanism across diverse tasks and data collection methodologies.

B.3 Long-Horizon Manipulation with Robotic Gripper

B.3.1 Long-Horizon Tasks Learned from Teleoperation

Figure 20 Task 1. Sequential object manipulation via multi-stage physical interactions with a distant object.
The task involves a two-stage strategy to manipulate a pen from a distant, non-graspable location (at the
arm’s far reach near singularity if performing the usual grasp) to a nearby location suitable for grasping.
Stage 1: the robot sweeps, reorients, and draws the object closer to its base. Stage 2: the robot executes a
final grasp and placement.

Building upon the corrective framework validated in the main text’s using dexterous hands, we further
designed three sequential long-horizon tasks using parallel jaw grippers to evaluate the framework’s efficacy
under different hardware and task settings. These three tasks include:

Task 1. Pen Relocation and Placement (Fig. 20): This task requires the robot to first sweep a distant slender
pen and bring it to a closer range, then to reorient the gripper to an appropriate angle, grasp and place
the pen. Common failure modes include inadequate sweeping force and incorrect gripper orientation during
the pre-grasp phase. In this scenario, the robot needs to first re-configure the object and change it from a
non-graspable state into a graspable pose, which requires the design of RL policies previously with handcrafted
reward design [45] and now can be learned through a VLA-based imitation by providing demonstrations for
learning such behaviors.

Task 2. Pill Box Packing (Fig. 21): In this multi-stage task, the robot must sequentially grasp a small
medication box, put it into a packaging bag, securely close the bag, and finally transport the entire package
to a designated location. Failures typically occur during the delicate bag-closing phase and when handling the
combined object during transport.
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Figure 21 Task 2. Sequential multi-stage packing showing key actions. Stage 1: placing the medication box
into the packaging bag. Stage 2: execution of closing the bag and transporting the closed package, showing
the capability of operating both rigid and deformable objects.

Figure 22 Task 3. Underactuated bottle uprighting by exploiting low torsional friction. Stage 1: grasping
the cap and lifting the bottle to induce passive uprighting via low torsional friction around the cap. Stage 2:
subsequent pick-and-place from a re-configured graspable pose to the target box.

Task 3. Bottle Uprighting and Placement (Fig. 22): This challenging task begins with re-configuring the state
of the object – grasping the cap of a horizontally positioned water bottle, followed by carefully lifting and
uprighting the bottle into a vertical orientation – and then completes with a standard pick-and-place operation.
The uprighting process presents particular difficulties in maintaining a stable grip, taking advantage of the
low torsional friction for passive rotation of the bottle during the execution of the lifting trajectory.

Following our established framework, we first trained a base policy πbase on initial demonstrations. Then, we
collected corrective trajectories via human teleoperation for those occurred failures across these diverse task
scenarios. After fine-tuning, the resulting policy πcorr achieved significantly higher success rates (see Table 5),
demonstrating that the corrective mechanism (as previously shown effective with shared autonomy) also works
well for the hardware system using teleoperation in complex multi-step tasks with parallel jaw grippers.
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Table 5 Success rates of long-horizon tasks via corrective teleoperation.

Tasks Task 1 (Fig. 20) Task 2 (Fig. 21) Task 3 (Fig. 22)

Success Rates 65% 90% 70%

B.3.2 Learning Industrial Assembly Task - Data Collection through Motion Planning

Figure 23 Peg-in-hole assembly task showing multiple stages (grasp, reorient, insert, release) under four different
initial configurations.

Figure 24 Time-elapsed frames of error-recovery during peg-in-hole assembly, showing stages of misalignment, collision,
retreat-and-reapproach, and failure recovery with successful insertion.
Complementing the human-in-the-loop approaches (such as the shared autonomy in the main text and
the teleoperation in long-horizon tasks in the Appendix), we investigated how automated motion planning
could generate effective failure-correction and serve as a useful source of data. We applied our framework
to a peg-in-hole assembly task – a canonical industrial task that requires spatial accuracy beyond typical
pick-and-place. Following the same experimental protocol, we began with 100 initial demonstrations to train
πbase using motion planning, where the representative cases from data collection are shown in Fig. 23.
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Table 6 Success rates of the task
of peg-in-hole.

Methods πbase πcorr

Peg-in-Hole 70% 90%

When the policy failed on precision-critical cases, we employed automated

motion planning to generate corrective trajectories (Fig. 24), instead of
human intervention. The motion planner produced recovery behaviors,
including fine adjustments and retreat-and-reapproach motions. Reported
as in Table 6, after incorporating 20 additional recovery trajectories and
fine-tuning, πcorr achieved a 90% success rate: 20%absolute improvement

over πbase. This result confirms that the corrective mechanism works effectively even with fully automated
correction and its generated data sources, extending its applicability beyond human-guided interventions.

B.4 Discussion and Summary

The collective evidence from all experiments – spanning pick-and-place tasks with shared autonomy (main
text), long-horizon tasks with teleoperation, and industrial assembly with motion planning – consistently
demonstrates the effectiveness of our corrective framework across task types and data collection approaches.
Each study followed the same fundamental principle: initial policy training, failure identification, corrective
data collection, and policy re-training/refinement, while employing different failure-correction approaches and
data sources tailored to the task-specific requirements. This iterative approach, despite relying on manual
intervention and human involvement, represents a preliminary implementation of a closed-loop data flywheel
that continuously retrains our VLA models with real-world interactions and the correspondingly generated
real-robot data.

This progression from human-guided corrections (e.g., shared autonomy, teleoperation) to fully automated
solutions (e.g., motion planning) highlights the framework’s core versatility, which can be tailored to different
functional components for a wide range of tasks. The shared autonomy approach balances human expertise
with automated assistance for efficient grasping corrections; teleoperation provides full human control for
complex multi-step tasks; while motion planning offers a fully automated solution for structured industrial
environments.

Most importantly, all three approaches yield significant performance improvements, confirming that the
corrective mechanism itself is the key driver of policy refinement and enhancement, while any specific data
collection method merely serves as a means to this end. This inherent versatility makes our framework
applicable across a broad spectrum of robotic learning scenarios, from human-centric environments to
structured industrial settings. By providing an effective means for continuous improvement, our work paves
the way for more capable and robust general-purpose VLA policies, ultimately expanding the reach of advanced
autonomous systems in the real world.
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